
MATH 320 NOTES, WEEK 8

2.2 The matrix representation of a linear transformation

Recall the definition of a matrix representation of a linear transformation:

Definition 1. Let V,W be vector spaces over F , dim(V ) = n, dim(W ) = k,
α = {x1, ..., xn} an ordered basis for V , β = {y1, ..., yk} an ordered basis for

W , and let T : V → W be a linear transformation. Define [T ]βα to be the

following matrix in Mk,n(F ): for 1 ≤ i ≤ n, the i-th column of [T ]βα is
[T (xi)]β.

The key property of the matrix representation defined as above, is that

[T ]βα[x]α = [T (x)]β.

Example 1. Suppose that A ∈ Mn,n(F ), and consider the linear trans-
formation LA : Fn → Fn defined by LA(x) = Ax. Let e be the standard
basis of Fn, then [LA]e = A.

Example 2. Let D : P3(R) → P3(R) be the derivative operator D(p) =
p′. Let e = {1, x, x2, x3} and β = {1 + x, x, x2 + x3, x3} Then

(1) [D]e =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0



(2) [D]β =


1 1 0 0
−1 −1 2 0
0 0 3 3
0 0 −3 −3


We have shown that in the finite dimensional case, linear transformations

can be identified as matrices. And as matrices are themselves vector spaces,
we can expect that linear transformations form vector spaces, too. It turns
out this is indeed the case, regardless of the dimension.

Definition 2. Let V,W be two vector spaces over a field F . Define L(V,W )
to be the set of all linear transformations T : V →W .

Next we will prove that L(V,W ) is a vector space over F and then com-
pute its dimension when V and W are finite dimensional.
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Lemma 3. L(V,W ) is a vector space over F with the following operations.
For T,U ∈ L(V,W ) and c ∈ F , set

(1) T + U : V →W is given by (T + U)(x) = T (x) + U(x),
(2) cT : V →W , is given by (cT )(x) = cT (x).

Proof. First, we will show that the two operations are well defined. Let
T,U ∈ L(V,W ) and c ∈ F . We have to show that T + U and cT are also
linear.

To that end, let x, y ∈ V and d ∈ F . Then

(T +U)(dx+ y) = T (dx+ y) +U(dx+ y) = dT (x) +T (y) + dU(x) +U(y) =

= d(T (x) + U(x)) + T (y) + U(y) = d(T + U)(x) + (T + U)(y).

Also,

(cT )(dx+y) = cT (dx+y) = c(dT (x)+T (y)) = dcT (x)+cT (y) = d(cT )(x)+(cT )(y).

Next we check the axioms. Axioms 1,2,5-8 hold because they hold in W .
We leave that as an exercise. For axiom 3, recall that the zero transfor-
mation T0 is given by T0(x) = ~0 for all x ∈ V . Then for any other linear
transformation T , T + T0 = T0 + T = T , and so axiom 3 holds. For axiom
4, let T be linear. Then define −T : V → W by (−T )(x) = −T (x) for all
x ∈ V . Then −T + T = T0, and so axiom 4 holds. �

Next we consider the case when V and W are finite dimensional.

Lemma 4. Suppose that V,W are finite dimensional vector space over F ,
with dim(V ) = n,dim(W ) = k. Let β be a basis for V and γ be a basis for
W . Define φ : L(V,W )→Mk,n(F ) by

φ(T ) = [T ]γβ.

Then φ is a one-to-one, onto linear transformation.

Proof. First we show linearity. Let T,U ∈ L(V,W ) and c ∈ F . We want to
show that φ(cT + U) = cφ(T ) + φ(U). Computing the left and right hand
sides, we get:

• LHS= φ(cT + U) = [cT + U ]γβ ;

• RHS= cφ(T ) + φ(U) = c[T ]γβ + [U ]γβ
Both of these are k by n matrices. We will show that they have the same

columns.
Let β = {x1, x2, ..., xn} and fix i, 1 ≤ i ≤ n. Then, by definition of matrix

representation, the ith column of the left hand side is

[(cT + U)(xi)]γ = [cT (xi) + U(xi)]γ = c[T (xi)]γ + [U(xi)]γ .

Then first equality is by definition of cT + U and the second equality is by
linearity of φγ (that was one of your homework problems).

On the other hand, the ith column of the left hand side, by definition of
matrix representations, is exactly

c[T (xi)]γ + [U(xi)]γ .
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It follows that the two are equal, and so φ is linear.
Next, we show that φ is one-to-one: suppose that T ∈ ker(φ). Then

φ(T ) = [T ]γβ = O,

i.e. it is the zero matrix. So, for every 1 ≤ i ≤ n, [T (xi)]γ = ~0. Then for

every i, T (xi) = ~0.

Since T sends every vector in the basis β to ~0, it follows that for all
x, T (x) = 0. So, T = T0, i.e. the zero transformations. It follows that

kerφ = {~0L(V,W )}, and so φ is one-to-one.
Finally, we show that φ is onto: let A ∈ Mk,n(F ). We have to find a

linear transformation T : V →W , such that [T ]γβ = A. To that end, denote

the (i, j)-th entry of A by aij , and denote γ = {y1, ..., yk}. let

• w1 = a11y1 + a21y2 + ...ak1yk,
• w2 = a12y1 + a22y2 + ...ak2yk,
• ...
• wn = a1ny1 + a2ny2 + ...aknyk.

Let T : V →W be the unique linear transformation such that

T (x1) = w1, T (x2) = w2, ..., T (xn) = wn.

Then the ith column of [T ]γβ is [T (xi)]γ =


ai1
ai2
· · ·
ain


But this is exactly the ith column of the matrix A. It follows that A =

[T ]γβ = φ(T ). So, φ is onto.
�

Corollary 5. If V,W are finite dimensional vector spaces over F , with
dim(V ) = n,dim(W ) = k, then dim(L(V,W )) = nk.

Proof. Take bases β of V and γ for W , and define φ as above. Then since
φ is a one-to-one, onto linear transformation, by the dimension theorem it
follows that dim(L(V,W )) = dim(Mk,n(F )) = nk.

�

2.3 Composition of linear transformations

Lemma 6. Suppose that V,W and Z are vector spaces over F and that T :
V → W and U : W → Z are linear transformations. Then the composition
UT : V → Z defined by

UT (x) = U(T (x))

is also a linear transformation.

Proof. Let x, y ∈ V and c ∈ F . Then UT (cx + y) = U(T (cx + y)) =
U(cT (x) + T (y)) = c(U(T (x))) + U(T (y)) = c(UT )(x) + (UT )(y).

�


